NS-ZnS:Mn, ZnS:Mn/Si3N4 multilayers with thicknesses of 1.9– 3.5 nm for ZnS were prepared by a rf-magnetron sputtering method. From the results of grazing incidence X-ray reflectometry and X-ray diffractmetry, formation of ZnS:Mn nanocrystals in the ZnS

نویسندگان

  • Toshihiko Toyama
  • Daisuke Adachi
  • Hiroaki Okamoto
چکیده

We have developed a new type of a thin-film electroluminescence (TFEL) device with nanostructured (NS)-ZnS:Mn utilizing its enhanced luminescent efficiency due to the quantum confinement (QC) effects. As NS-ZnS:Mn, ZnS:Mn/Si3N4 multilayers with thicknesses of 1.9– 3.5 nm for ZnS were prepared by a rf-magnetron sputtering method. From the results of grazing incidence X-ray reflectometry and X-ray diffractmetry, formation of ZnS:Mn nanocrystals in the ZnS layers are confirmed. With a decrease in the ZnS:Mn layer thickness, the photoluminescence (PL) efficiency associated with the Mn2+ transitions is increased, and the PL excitation spectrum is shifted toward higher energies, indicating appearance of the QC effects. As the results of the application of NS-ZnS:Mn to the emission layer of the TFEL device, we have successfully observed reddish-orange emission above the threshold voltage of 12 V0-p, and the maximum luminance is 3.0 cd/m2 operated with the 1-kHz sinusoidal voltage of 20 V0-p.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and luminescence properties of ZnS:Mn/ZnS core/shell nanorod structures

Mn-doped ZnS nanorods synthesized by solvothermal method were successfully coated with ZnS shells of various thicknesses. The powder X-ray diffraction (XRD) measurements showed the ZnS:Mn nanorods were wurtzite structure with preferential orientation along c-axis. Transmission electron microscopy images (TEM) revealed that the ZnS shells formed from small particles, growing along a-axis orienta...

متن کامل

Synthesis and Luminescence Properties of Core/Shell ZnS:Mn/ZnO Nanoparticles

In this paper the influence of ZnO shell thickness on the luminescence properties of Mn-doped ZnS nanoparticles is studied. Transmission electron microscopy (TEM) images showed that the average diameter of ZnS:Mn nanoparticles is around 14 nm. The formation of ZnO shells on the surface of ZnS:Mn nanoparticles was confirmed by X-ray diffraction (XRD) patterns, high-resolution TEM (HRTEM) images,...

متن کامل

Effects of the Template Composition and Coating on the Photoluminescence Properties of ZnS:Mn Nanoparticles

Mn-doped ZnS nanocrystals based on low dopant concentrations (0-2%) and coated with a shell of Zn(OH)2 have been prepared via soft template and precipitation reaction. The results indicate that the ZnS:Mn nanocrystal is cubic zinc blende structure and its diameter is 3.02 nm as demonstrated by XRD. Measured by TEM, the morphology of nanocrystals is a spherical shape, and their particle size (3-...

متن کامل

Structure and luminescence of annealed nanoparticles of ZnS:Mn

Structural and light-emitting properties of nanoparticles of ZnS:Mn annealed in vacuum at temperatures up to 525 °C are presented. Annealing the 3.5 nm particles at temperatures up to 350 °C caused growth of some particles without substantial change in the luminescence or ZnS lattice. After annealing at 400–525 °C, the high-temperature wurtzite phase of ZnS appeared, accompanied by an increase ...

متن کامل

Surface Properties and Photocatalytic Activities of the Colloidal ZnS:Mn Nanocrystals Prepared at Various pH Conditions

Water-dispersible ZnS:Mn nanocrystals (NC) were synthesized by capping the surface with mercaptoacetic acid (MAA) molecules at three different pH conditions. The obtained ZnS:Mn-MAA NC products were physically and optically characterized by corresponding spectroscopic methods. The UV-Visible absorption spectra and PL emission spectra showed broad peaks at 310 and 590 nm, respectively. The avera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000